Local Cluster Architecture | Sleep-Enabled Cluster Software

- Workload characterization and optimization
- Power-aware network-proxying, hadoop execution, Batch scheduling
- Low power, heterogeneous node hardware

- Many clusters are very underutilized, but don't sleep
- Network protocols maintain liveness with keepalives,
- Local projects
 - “Green” Ganglia: update ganglia to put machines to sleep when not in use
 - Network Proxying: explore the cost of maintaining an always on illusion with protocol proxies

Workload Characterization

- How well do we need to understand a workload to execute it efficiently?
- Locate most efficient execution point based on parallelization overhead and available hardware
- Local projects:
 - Examine workload efficiency on different architectures of hadoop, SPECInt, etc.
 - Explore job assignment algorithms: power proportional Hadoop?
 - Build a distributed JouleSort competitor
 - Develop tools to measure and attribute power drain

Hardware

- The hardware is what uses the power!
- Examine power distribution, architectural features
- Local projects:
 - Build a cluster computing resource platform:
 - Node, rack, and cage-level storage elements
 - Energy-efficient hardware with low idle powers and usable sleep (S3) states.